Physiologic hyperinsulinemia enhances human skeletal muscle perfusion by capillary recruitment.

نویسندگان

  • M Coggins
  • J Lindner
  • S Rattigan
  • L Jahn
  • E Fasy
  • S Kaul
  • E Barrett
چکیده

Despite intensive study, the relation between insulin's action on blood flow and glucose metabolism remains unclear. Insulin-induced changes in microvascular perfusion, independent from effects on total blood flow, could be an important variable contributing to insulin's metabolic action. We hypothesized that modest, physiologic increments in plasma insulin concentration alter microvascular perfusion in human skeletal muscle and that these changes can be assessed using contrast-enhanced ultrasound (CEU), a validated method for quantifying flow by measurement of microvascular blood volume (MBV) and microvascular flow velocity (MFV). In the first protocol, 10 healthy, fasting adults received insulin (0.05 mU. kg(-1). min(-1)) via a brachial artery for 4 h under euglycemic conditions. At baseline and after insulin infusion, MBV and MFV were measured by CEU during continuous intravenous infusion of albumin microbubbles with intermittent harmonic ultrasound imaging of the forearm deep flexor muscles. In the second protocol, 17 healthy, fasting adults received a 4-h infusion of either insulin (0.1 mU. kg(-1). min(-1), n = 9) or saline (n = 8) via a brachial artery. Microvascular volume was assessed in these subjects by an alternate CEU technique using an intra-arterial bolus injection of albumin microbubbles at baseline and after the 4-h infusion. With both protocols, muscle glucose uptake, plasma insulin concentration, and total blood flow to the forearm were measured at each stage. In protocol 2 subjects, tissue extraction of 1-methylxanthine (1-MX) was measured as an index of perfused capillary volume. Caffeine, which produces 1-MX as a metabolite, was administered to these subjects before the study to raise plasma 1-MX levels. In protocol 1 subjects, insulin increased muscle glucose uptake (180%, P < 0.05) and MBV (54%, P < 0.01) and decreased MFV (-42%, P = 0.07) in the absence of significant changes in total forearm blood flow. In protocol 2 subjects, insulin increased glucose uptake (220%, P < 0.01) and microvascular volume (45%, P < 0.05) with an associated moderate increase in total forearm blood flow (P < 0.05). Using forearm 1-MX extraction, we observed a trend, though not significant, toward increasing capillary volume in the insulin-treated subjects. In conclusion, modest physiologic increments in plasma insulin concentration increased microvascular blood volume, indicating altered microvascular perfusion consistent with a mechanism of capillary recruitment. The increases in microvascular (capillary) volume (despite unchanged total blood flow) indicate that the relation between insulin's vascular and metabolic actions cannot be fully understood using measurements of bulk blood flow alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction between insulin sensitivity and muscle perfusion on glucose uptake in human skeletal muscle: evidence for capillary recruitment.

Insulin and glucose delivery (muscle perfusion) can modulate insulin-mediated glucose uptake. This study was undertaken to determine 1) to what extent insulin sensitivity modulates the effect of perfusion on glucose uptake and 2) whether this effect is achieved via capillary recruitment. We measured glucose disposal rates (GDRs) and leg muscle glucose uptake (LGU) in subjects exhibiting a wide ...

متن کامل

Vascular recruitment in skeletal muscle during exercise and hyperinsulinemia assessed by contrast ultrasound.

The purpose of this study was to noninvasively quantify the effects of insulin on capillary blood volume (capBV) and RBC velocity (V(RBC)) in skeletal muscle in vivo with the use of contrast-enhanced ultrasound. We performed contrast ultrasound of the rat hindlimb adductor muscles at baseline and after 2-h infusions of either insulin (3 or 40 mU x kg(-1) x min(-1)) or saline. Saline-treated ani...

متن کامل

Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow.

Supraphysiological doses of insulin enhance total limb blood flow and recruit capillaries in skeletal muscle. Whether these processes change in response to physiological hyperinsulinemia is uncertain. To examine this, we infused either saline (n = 6) or insulin (euglycemic clamp, 3.0 mU x min(-1) x kg(-1), n = 9) into anesthetized rats for 120 min. Femoral artery flow was monitored continuously...

متن کامل

Role of tissue-specific blood flow and tissue recruitment in insulin-mediated glucose uptake of human skeletal muscle.

BACKGROUND Conflicting evidence exists concerning whether insulin-induced vasodilation plays a mechanistic role in the regulation of limb glucose uptake. It can be predicted that if insulin augments blood flow by causing tissue recruitment, this mechanism would enhance limb glucose uptake. METHODS AND RESULTS Twenty healthy subjects were studied with the forearm perfusion technique in combina...

متن کامل

Chapter 3 – Microvascular Recruitment in Skin and Muscle

Insulin-induced capillary recruitment is considered a determinant of insulin-mediated glucose uptake. Insulin action on the microvasculature has been assessed in skin, however, there is concern as to whether the vascular responses observed in skin reflect those in muscle. We hypothesized that insulin-induced capillary recruitment in skin would correlate with microvascular recruitment in muscle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 50 12  شماره 

صفحات  -

تاریخ انتشار 2001